Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8554-8569, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323816

RESUMO

Optical imaging and spectroscopic modalities are of considerable current interest for in vivo cancer detection and image-guided surgery, but the turbid or scattering nature of biomedical tissues has severely limited their abilities to detect buried or occluded tumor lesions. Here we report the development of a dual-modality plasmonic nanostructure based on colloidal gold nanostars (AuNSs) for simultaneous surface-enhanced Raman scattering (SERS) and photoacoustic (PA) detection of tumor phantoms embedded (hidden) in ex vivo animal tissues. By using red blood cell membranes as a naturally derived biomimetic coating, we show that this class of dual-modality contrast agents can provide both Raman spectroscopic and PA signals for the detection and differentiation of hidden solid tumors with greatly improved depths of tissue penetration. Compared to previous polymer-coated AuNSs, the biomimetic coatings are also able to minimize protein adsorption and cellular uptake when exposed to human plasma without compromising their SERS or PA signals. We further show that tumor-targeting peptides (such as cyclic RGD) can be noncovalently inserted for targeting the ανß3-integrin receptors expressed on metastatic cancer cells and tracked via both SERS and PA imaging (PAI). Finally, we demonstrate image-guided resections of tumor-mimicking phantoms comprising metastatic tumor cells buried under layers of skin and fat tissues (6 mm in thickness). Specifically, PAI was used to determine the precise tumor location, while SERS spectroscopic signals were used for tumor identification and differentiation. This work opens the possibility of using these biomimetic dual-modality nanoparticles with superior signal and biological stability for intraoperative cancer detection and resection.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Animais , Humanos , Meios de Contraste , Análise Espectral Raman/métodos , Biomimética , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Nanopartículas Metálicas/química
2.
Small ; 20(4): e2303937, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715112

RESUMO

Carbon dots (CDs) being a new type of carbon-based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom-up and top-down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.

3.
Sci Adv ; 9(44): eadk3860, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922355

RESUMO

Imaging and identifying target signatures and biomedical markers in the ultraviolet (UV) spectrum is broadly important to medical imaging, military target tracking, remote sensing, and industrial automation. However, current silicon-based imaging sensors are fundamentally limited because of the rapid absorption and attenuation of UV light, hindering their ability to resolve UV spectral signatures. Here, we present a bioinspired imaging sensor capable of wavelength-resolved imaging in the UV range. Inspired by the UV-sensitive visual system of the Papilio xuthus butterfly, the sensor monolithically combines vertically stacked photodiodes and perovskite nanocrystals. This imaging design combines two complementary UV detection mechanisms: The nanocrystal layer converts a portion of UV signals into visible fluorescence, detected by the photodiode array, while the remaining UV light is detected by the top photodiode. Our label-free UV fluorescence imaging data from aromatic amino acids and cancer/normal cells enables real-time differentiation of these biomedical materials with 99% confidence.


Assuntos
Borboletas , Luz , Animais , Raios Ultravioleta , Óxidos , Imagem Óptica
4.
Nanomedicine (Lond) ; 18(16): 1061-1073, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37610080

RESUMO

Aims: Among solid tumors, hypoxia is a common characteristic and responsible for chemotherapeutic resistance. Hypoxia-sensitive imaging probes are therefore essential for early tumor detection, growth monitoring and drug-response evaluation. Despite significant efforts, detecting hypoxic oxygen levels remains challenging. Materials & methods: This paper demonstrates the use of an amine-rich carbon dot probe functionalized with an imidazole group that exhibits reversible fluorescence switching in normoxic and hypoxic environments. Results & conclusion: We demonstrate the ability to emit near-infrared light only under hypoxic conditions. The probes are found to be biodegradable in the presence of human digestive enzymes such as lipase. Ex vivo tissue imaging experiments revealed promising near-infrared signals even at a depth of 5 mm for the probe under ex vivo imaging conditions.


Hypoxia is the state where oxygen is not adequately available at the tissue level and is the common cause of resistance toward chemotherapeutics. Hence, probes that can detect hypoxia are important in detecting early tumor progression. Here in this paper, we have developed a fluorescent probe which helps in determining normoxic and hypoxic environments. This probe emits near-infrared light only under hypoxic conditions. The phenomena have been established herein by extensive experiments.


Assuntos
Corantes Fluorescentes , Hipóxia , Humanos , Hipóxia/diagnóstico por imagem , Oxigênio , Aminas , Carbono
5.
J Biomed Opt ; 28(5): 056002, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37250858

RESUMO

Significance: Fluorescently guided minimally invasive surgery is improving patient outcomes and disease-free survival, but biomarker variability hinders complete tumor resection with single molecular probes. To overcome this, we developed a bioinspired endoscopic system that images multiple tumor-targeted probes, quantifies volumetric ratios in cancer models, and detects tumors in ex vivo samples. Aim: We present a new rigid endoscopic imaging system (EIS) that can capture color images while simultaneously resolving two near-infrared (NIR) probes. Approach: Our optimized EIS integrates a hexa-chromatic image sensor, a rigid endoscope optimized for NIR-color imaging, and a custom illumination fiber bundle. Results: Our optimized EIS achieves a 60% improvement in NIR spatial resolution when compared to a leading FDA-approved endoscope. Ratio-metric imaging of two tumor-targeted probes is demonstrated in vials and animal models of breast cancer. Clinical data gathered from fluorescently tagged lung cancer samples on the operating room's back table demonstrate a high tumor-to-background ratio and consistency with the vial experiments. Conclusions: We investigate key engineering breakthroughs for the single-chip endoscopic system, which can capture and distinguish numerous tumor-targeting fluorophores. As the molecular imaging field shifts toward a multi-tumor targeted probe methodology, our imaging instrument can aid in assessing these concepts during surgical procedures.


Assuntos
Neoplasias , Cirurgia Assistida por Computador , Animais , Endoscopia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Imagem Molecular , Sondas Moleculares , Corantes Fluorescentes , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos
6.
ACS Nano ; 17(9): 8465-8482, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126072

RESUMO

Real-time guidance through fluorescence imaging improves the surgical outcomes of tumor resections, reducing the chances of leaving positive margins behind. As tumors are heterogeneous, it is imperative to interrogate multiple overexpressed cancer biomarkers with high sensitivity and specificity to improve surgical outcomes. However, for accurate tumor delineation and ratiometric detection of tumor biomarkers, current methods require multiple excitation wavelengths to image multiple biomarkers, which is impractical in a clinical setting. Here, we have developed a biomimetic platform comprising near-infrared fluorescent semiconducting polymer nanoparticles (SPNs) with red blood cell membrane (RBC) coating, capable of targeting two representative cell-surface biomarkers (folate, αυß3 integrins) using a single excitation wavelength for tumor delineation during surgical interventions. We evaluate our single excitation ratiometric nanoparticles in in vitro tumor cells, ex vivo tumor-mimicking phantoms, and in vivo mouse xenograft tumor models. Favorable biological properties (improved biocompatibility, prolonged blood circulation, reduced liver uptake) are complemented by superior spectral features: (i) specific fluorescence enhancement in tumor regions with high tumor-to-normal tissue (T/NT) ratios in ex vivo samples and (ii) estimation of cell-surface tumor biomarkers with single wavelength excitation providing insights about cancer progression (metastases). Our single excitation, dual output approach has the potential to differentiate between the tumor and healthy regions and simultaneously provide a qualitative indicator of cancer progression, thereby guiding surgeons in the operating room with the resection process.


Assuntos
Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Biomarcadores Tumorais , Neoplasias/diagnóstico por imagem , Membrana Eritrocítica , Imagem Óptica
7.
ACS Nano ; 16(5): 8051-8063, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35471820

RESUMO

The development of biocompatible and nontoxic surface-enhanced Raman scattering (SERS) nanoparticles is of considerable current interest because of their attractive biomedical applications such as ultrasensitive in vitro diagnostics, in vivo tumor imaging, and spectroscopy-guided cancer surgery. However, current SERS nanoparticles are prepared and stored in aqueous solution, have limited stability and dispersibility, and are not suitable for lyophilization and storage by freeze-drying or other means. Here, we report a simple but robust method to coat colloidal SERS nanoparticles by naturally derived biomimetic red blood cell membranes (RBCM), leading to a dramatic improvement in stability and dispersibility under freeze-thawing, lyophilization, heating, and physiological conditions. The results demonstrate that the lyophilized SERS nanoparticles in the solid form can be readily dissolved and dispersed in physiological buffer solutions. A surprising finding is that the RBCM-coated SERS particles are considerably brighter (by as much as 5-fold) than PEGylated SERS particles under similar experimental conditions. This additional enhancement is believed to arise from the hydrophobic nature of RBCM's hydrocarbon chains, which is known to reduce electronic dampening and boost electromagnetic field enhancement. A further advantage in using biomimetic membrane coatings is that the bilayer membrane structure allows nonvalent insertion of molecular ligands for tumor targeting. In particular, we show that cyclic-RGD, a tumor-targeting peptide, can be efficiently inserted into the membrane coatings of SERS nanoparticles for targeting the ανß3 integrin receptors expressed on cancer cells. Thus, biomimetic RBCMs provide major advantages over traditional polyethylene glycols for preparing SERS nanoparticles with improved dispersibility, higher signal intensity, and more efficient biofunctionalization.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Análise Espectral Raman/métodos , Ouro/química , Biomimética , Linhagem Celular Tumoral , Nanopartículas/química , Nanopartículas Metálicas/química
8.
ACS Appl Mater Interfaces ; 13(50): 59747-59760, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878252

RESUMO

We disclose for the first time a facile synthetic methodology for the preparation of multicolor carbon dots (CDs) from a single source barring any chromatographic separations. This was achieved via sequential intraparticle cross-linking of surface abundant carboxylic acid groups on the CDs synthesized from a precursor to control their photoluminescence (PL) spectra as well as affect their degree of cellular internalization in cancer cells. The change in PL spectra with sequential cross-linking was projected by theoretical density functional theory (DFT) studies and validated by multiple characterization tools such as X-ray photoelectron spectroscopy (XPS), PL spectroscopy, ninhydrin assay, etc. The variation in cellular internalization of these cross-linked CDs was demonstrated using inhibitor assays, confocal microscopy, and flow cytometry. We supplemented our findings with high-resolution dark-field imaging to visualize and confirm the colocalization of these CDs into distinct intracellular compartments. Finally, to prove the surface-state controlled PL mechanisms of these cross-linked CDs, we fabricated a triple-channel sensor array for the identification of different analytes including metal ions and biologically relevant proteins.


Assuntos
Materiais Biocompatíveis/farmacocinética , Carbono/farmacocinética , Reagentes de Ligações Cruzadas/farmacocinética , Corantes Fluorescentes/farmacocinética , Luminescência , Pontos Quânticos/química , Materiais Biocompatíveis/química , Carbono/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Teoria da Densidade Funcional , Corantes Fluorescentes/química , Humanos , Teste de Materiais , Estrutura Molecular , Imagem Óptica , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 13(39): 46464-46477, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569780

RESUMO

Many works utilize products isolated from nature as capping agents to functionalize gold nanoparticles for targeting and therapeutic applications. Some of the most advanced of these strategies utilize complex multicomponent biomaterials, such as whole cell-membranes, for nanoparticle functionalization strategies for evading or initializing immune response as well as for targeting. Strategies like these, wherein whole cell membrane is utilized for functionalization, take advantage of the complexity of the protein-lipid content and organization, which cells normally use for communication and interaction (instilling these capacities to nanoparticle vectors). Many approaches for achieving this in functionalizing the surface of nanoparticles rely on multistep processes, which necessitate the addition and then removal of synthetic molecules, heating, or pH modifications. These processes can have deleterious modifying effects on the functionalizing biomolecules, resulting in loss of product and time during each purification step, as well as potentially changing the biomolecule functionality toward a nondesirable effect. Here, we describe methods for forming gold nanoparticles at room temperature in a single step, functionalized with proteins, using nicotinamide adenine dinucleotide (NADH). This process enables formation of nanoparticles that can be functionalized by individual proteins (demonstrated with FBS) or whole cells membrane (extracted from B16F10 cells). This work is derivative from observations found in the literature by us and others, that mammalian cells are capable of producing gold nanoparticles from ionic gold without the supplementation of chemical species. The products of this single-step synthesis described herein have been optimized to maintain biomolecule integrity and so that there are no further purification steps required. To characterize the nanoparticles in terms of their shape, size, surface functionality, and biomolecule integrity throughout development, we employed light-based spectroscopy techniques, molecular modeling, electron microscopy, light scattering, and gel electrophoresis techniques. In order to compare the optimized biomolecule-functionalized nanoparticles against current standards (which require synthetic linkers, heating, or pH manipulation), we employed metabolic and live/dead assays as well as light-based microscopy/spectroscopy in vitro. In comparing our synthetic process against others for forming gold nanoparticles functionalized with complex biomolecule components (whole-cell membrane), we found that this process had superior particle internalization. Our strategy has similar outlets for application to these other works, however, because this process is entirely reliant on endogenous biomaterials and has additional potential.


Assuntos
Materiais Biomiméticos/química , Proteínas Imobilizadas/química , Nanopartículas Metálicas/química , Animais , Materiais Biomiméticos/síntese química , Proteínas Sanguíneas/química , Bovinos , Linhagem Celular Tumoral , Membrana Celular/química , Ouro/química , Camundongos , NAD/química
10.
Nanoscale ; 13(38): 16288-16295, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34558578

RESUMO

Photo-caged carbon nanoparticles (CNPs) that are non-luminescent under typical microscopic illumination but can be activated by UV light have been synthesized in this work. Negatively charged "bare" CNPs with high luminescence can lose their photoluminescence (PL) when they are chemically crosslinked to a monomer and subsequently polymerized to form an intra-particulate "caged" network at the nanoscale surface. These caged particles could regain their PL emission upon UV irradiation for a sustained period (∼24 h) resulting in the photolytic cleavage of the polymer network, thus, freeing the nanoscale surface of CNPs, ultimately resulting in six-fold emission enhancement. This reversible "on-off-on" PL switching process was verified by spectroscopic techniques. We successfully demonstrated in this work that CNPs can be switched reversibly between fluorescent and non-fluorescent states by irradiation with light. These results further substantiate that the origin of PL in CNPs is a surface phenomenon and highly dependent on their nanoscale coverage.

11.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836601

RESUMO

Time- and space-resolved excited states at the individual nanoparticle level provide fundamental insights into heterogeneous energy, electron, and heat flow dynamics. Here, we optically excite carbon dots to image electron-phonon dynamics within single dots and nanoscale thermal transport between two dots. We use a scanning tunneling microscope tip as a detector of the optically excited state, via optical blocking of electron tunneling, to record movies of carrier dynamics in the 0.1-500-ps time range. The excited-state electron density migrates from the bulk to molecular-scale (∼1 nm2) surface defects, followed by heterogeneous relaxation of individual dots to either long-lived fluorescent states or back to the ground state. We also image the coupling of optical phonons in individual carbon dots with conduction electrons in gold as an ultrafast energy transfer mechanism between two nearby dots. Although individual dots are highly heterogeneous, their averaged dynamics is consistent with previous bulk optical spectroscopy and nanoscale heat transfer studies, revealing the different mechanisms that contribute to the bulk average.


Assuntos
Carbono/química , Nanopartículas/química , Imagem Individual de Molécula , Elétrons , Transferência de Energia , Fluorescência , Ouro/química , Microscopia de Tunelamento , Modelos Químicos , Fônons
12.
Nat Commun ; 11(1): 4530, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913195

RESUMO

Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold. We have characterized this process for intracellular gold nanoparticle formation, which progressively accumulates proteins as the ionic gold clusters migrate to the nucleus. This nano-vectorized application of ionic gold emphasizes its potential biomedical opportunities while reducing the quantity of ionic gold and required incubation time. To demonstrate its biomedical potential, we further induce in-situ biosynthesis of gold nanoparticles within MCF7 tumor mouse xenografts which is followed by its photothermal remediation.


Assuntos
Cloretos/administração & dosagem , Portadores de Fármacos/química , Compostos de Ouro/administração & dosagem , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Biomineralização/efeitos da radiação , Feminino , Ouro/efeitos da radiação , Humanos , Hipertermia Induzida/métodos , Íons , Células MCF-7 , Nanopartículas Metálicas/efeitos da radiação , Camundongos , Fotoquimioterapia/métodos , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Chemosphere ; 252: 126494, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443261

RESUMO

We used five types of surfactants assisted with sodium salts, including sodium tartrate (ST), sodium chloride (SC), and humic acid sodium (HAS) as auxiliary agents for soil washing to remove diesel from contaminated soil. Decontamination enhancement of diesel polluted soil washing with biosurfactant and H2O2 was examined, which showed higher effectiveness for newly contaminated soil. An increase in temperature and sodium salt addition exhibited a profound enhancement in diesel removal from aged contaminated soils. Compared to ST and SC, HAS exhibited a higher removal efficiency with saponin washing for aged diesel contaminated soil by lowering surface tension, shifting zeta potential, and increasing the number of micelles. Phytotoxicity experiments showed no significant inhibition of germination of lettuce, arugula, and cucumber with 0.2 g L-1 saponin incubation. Conversely, there was a promotion on the root extension of lettuce and cucumber except for arugula. Similarly, the addition of 2% HAS (wight of saponin) improved on root growth of lettuce, arugula, and cucumber, increasing by 25%, 5%, and 22% at the period of 14 d, respectively. Because of excellent removal efficiency and non-toxicity, enhanced wash with saponin and HAS might be considered in the future design of full-scale remediation processes of diesel contaminated soil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Tensoativos/química , Poluição Ambiental , Substâncias Húmicas , Peróxido de Hidrogênio , Micelas , Solo , Poluentes do Solo/análise
14.
ACS Sens ; 5(6): 1689-1698, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466640

RESUMO

In the field of theranostics, diagnostic nanoparticles are designed to collect highly patient-selective disease profiles, which is then leveraged by a set of nanotherapeutics to improve the therapeutic results. Despite their early promise, high interpatient and intratumoral heterogeneities make any rational design and analysis of these theranostics platforms extremely problematic. Recent advances in deep-learning-based tools may help bridge this gap, using pattern recognition algorithms for better diagnostic precision and therapeutic outcome. Triple-negative breast cancer (TNBC) is a conundrum because of the complex molecular diversity, making its diagnosis and therapy challenging. To address these challenges, we propose a method to predict the cellular internalization of nanoparticles (NPs) against different cancer stages using artificial intelligence. Here, we demonstrate for the first time that a combination of machine-learning (ML) algorithm and characteristic cellular uptake responses for individual cancer cell types can be successfully used to classify various cancer cell types. Utilizing this approach, we can optimize the nanomaterials to get an optimum structure-internalization response for a given particle. This methodology predicted the structure-internalization response of the evaluated nanoparticles with remarkable accuracy (Q2 = 0.9). We anticipate that it can reduce the effort by minimizing the number of nanoparticles that need to be tested and could be utilized as a screening tool for designing nanotherapeutics. Following this, we have proposed a diagnostic nanomaterial-based platform used to assemble a patient-specific cancer profile with the assistance of machine learning (ML). The platform is composed of eight carbon nanoparticles (CNPs) with multifarious surface chemistries that can differentiate healthy breast cells from cancerous cells and then subclassify TNBC cells vs non-TNBC cells, within the TNBC group. The artificial neural network (ANN) algorithm has been successfully used in identifying the type of cancer cells from 36 unknown cancer samples with an overall accuracy of >98%, providing potential applications in cancer diagnostics.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Inteligência Artificial , Humanos , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas/diagnóstico
15.
ACS Nano ; 14(5): 6127-6137, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32324372

RESUMO

Unlike quantum dots, photophysical properties of carbon dots (CDs) are not strongly correlated with particle size. The origin of CD photoluminescence has been related to sp2 domain size and the abundance of oxidized surface defects. However, direct imaging of surface-accessible spatially localized oxidized defects is still lacking. In this work, solvothermal-synthesized CDs are fractionated into different colors by polarity-based chromatography. We then study the mechanism of CD fluorescence by directly imaging individual CDs with subparticle resolution by scanning tunneling microscopy. Density of states imaging of CDs reveals that the graphitic core has a large bandgap that is inconsistent with observed fluorescence wavelength, whereas localized defects have smaller electronic gaps for both red-emitting dots (rCDs) and blue-emitting dots (bCDs). For individual bCDs within our laser tuning range, we directly image optically active surface defects (ca. 1-3 nm in size) and their bandgaps, which agree with the emission wavelength of the ensemble from which the bCDs were taken. We find that the emissive defects are not necessarily the ones with the smallest gap, consistent with quantum yields less than unity (0.1-0.26). X-ray photoelectron spectroscopy and pH-dependent fluorescence titration show that oxygen-containing surface-accessible protonatable functional groups (e.g., phenolic -OH, -COOH) define the chemical identity of the defects. This observation explains why we detect neither long-lived optical excitation of the core nor a correlation between size and emission wavelength. Instead, control over the number of oxygen-containing defects defines the emission wavelength, with more oxidized defects at the surface producing redder emission wavelengths.


Assuntos
Carbono , Pontos Quânticos , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectrometria de Fluorescência
16.
ACS Appl Mater Interfaces ; 12(14): 16137-16149, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182420

RESUMO

By using complementary DNA sequences as surface ligands, we selectively allow two individual diffusing "dual-color" carbon dots to interact in situ and in vitro. Spontaneous nanoscale oxidation of surface-abundant nitroso-/nitro-functionalities leads to two distinctly colored carbon dots (CD) which are isolated by polarity driven chromatographic separation. Green- and red-emitting carbon dots (gCD and rCD) were decorated by complementary single-stranded DNAs which produce a marked increase in the fluorescence emission of the respective carbon dots. Mutual colloidal interactions are achieved through hybridization of complementary DNA base pairs attached to the respective particles, resulting in quenching of their photoluminescence. The observed post-hybridization quenching is presumably due to a combined effect from an aggregation of CDs post duplex DNA formation and close proximity of multicolored CDs, having overlapped spectral regions leading to a nonradiative energy transfer process possibly released as heat. This strategy may contribute to the rational design of mutually interacting carbon dots for a better control over the resulting assembly structure for studying different biological phenomenon including molecular cytogenetics. One of the newly synthesized CDs was successfully used to image intracellular location of GAPDH mRNA using an event of change in fluorescence intensity (FI) of CDs. This selectivity was introduced by conjugating an oligonucleotide harboring complementary sequence to GAPDH mRNA. FI of this conjugated carbon dot, rCD-GAPDH, was also found to decrease in the presence of Ca2+, varied in relation to H+ concentrations, and could serve as a tool to quantify the intracellular concentrations of Ca2+ and pH value (H+) which can give important information about cell survival. Therefore, CD-oligonucleotide conjugates could serve as efficient probes for cellular events and interventions.


Assuntos
Técnicas Biossensoriais , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/isolamento & purificação , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Carbono/química , DNA de Cadeia Simples/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Humanos , Pontos Quânticos/química , RNA Mensageiro/química , RNA Mensageiro/isolamento & purificação
17.
ACS Sens ; 4(10): 2730-2737, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31529960

RESUMO

Fluorescent array-based sensing is an emerging differential sensing platform for sensitive detection of analytes in a complex environment without involving a conventional "lock and key" type-specific interaction. These sensing techniques mainly rely on different optical pattern generation from a sensor array and their pattern recognition to differentiate analytes. Currently emerging, compelling pattern-recognition method, Machine Learning (ML), enables a machine to "learn" a pattern by training without having the recognition method explicitly programmed into it. Thus, ML has an enormous potential to analyze these sensing data better than widely used statistical pattern-recognition methods. Here, an array-based sensor using easy-to-synthesize carbon dots with varied surface functionality is reported, which can differentiate between eight different proteins at 100 nM concentration. The utility of using machine learning algorithms in pattern recognition of fluorescence signals from the array has also been demonstrated. In analyzing the array-based sensing data, Machine Learning algorithms like "Gradient-Boosted Trees" have achieved a 100% prediction efficiency compared to inferior-performing classical statistical method "Linear Discriminant Analysis".


Assuntos
Técnicas Biossensoriais , Aprendizado de Máquina , Carbono/química , Fluorescência , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
18.
Nanoscale ; 11(17): 8226-8236, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30973556

RESUMO

Carbon dots (CDs) have recently garnered significant attention owing to their excellent luminescence properties, thereby demonstrating a variety of applications in in vitro and in vivo imaging. Understanding the long-term metabolic fate of these agents in a biological environment is the focus of this work. Here we show that the CDs undergo peroxide catalysed degradation in the presence of lipase. Our results indicate that differently charged CD species exhibit unique degradation kinetics upon being subjected to enzyme oxidation. Furthermore, this decomposition correlates with the relative accessibility of the enzymatic molecule. Using multiple physico-chemical characterization studies and molecular modelling, we confirmed the interaction of passivating surface abundant molecules with the enzyme. Finally, we have identified hydroxymethyl furfural as a metabolic by-product of the CDs used here. Our results indicate the possibility and a likely mechanism for complete CD degradation in living systems that can pave the way for a variety of biomedical applications.


Assuntos
Carbono/química , Enzimas/metabolismo , Pontos Quânticos/química , Animais , Biocatálise , Feminino , Peróxido de Hidrogênio/química , Lipase/metabolismo , Camundongos , Camundongos Nus , Oxirredução , Espectroscopia Fotoeletrônica , Polietilenoimina/química , Pontos Quânticos/metabolismo
19.
Analyst ; 144(4): 1448-1457, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30608068

RESUMO

In this work, an ultra-sensitive electrochemical-digital sensor chip is devised for potential use as a digital stress analyzer for point-of-care testing (POCT) and preventive on-site recording of the hormone 'cortisol', a glucocorticoid class of steroid hormone present in the human saliva. The sensor was interfaced and re-configured with a high precision impedance converter system (AD5933) and used for electrochemical impedance spectroscopy (EIS) to evaluate the cortisol levels in seven saliva samples. To obtain enhanced biological (cortisol) recognition and achieve a lower limit of detection 0.87 ± 0.12 pg mL-1 (2.4 ± 0.38 pmol mL-1) with a wide range from 1 pg mL-1 to 10 ng mL-1 (2.75 pmol mL-1 to 27.58 pmol mL-1; R2 = 0.9831), bovine serum albumin (1% BSA) was utilized as an effective sensitivity enhancer in addition to optimizing the other two parameters: (i) anti-cortisol antibody (anti-CAb) covalently attached to micro-Au electrodes and (ii) saliva sample incubation time on the sensor chip. The results obtained in this work were corroborated with the gold standard ELISA test with an accuracy of 96.3% and other previously reported biosensors. We envisage that the conceivable standpoint of this study can be a practice towards new development in cortisol biosensing, which will be pertinent to POCT targeted for in vitro psychobiological study on patient cortisol in saliva, and finally an implantable sensor chip in the future.


Assuntos
Técnicas Biossensoriais/métodos , Glucocorticoides/análise , Imunoensaio/métodos , Limite de Detecção , Saliva/química , Eletroquímica , Humanos , Hidrocortisona/análise
20.
Carbon N Y ; 1452019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34795455

RESUMO

Carbon dots have garnered attention for their strong multi-color luminescence properties and unprecedented biocompatibility. Despite significant progress in the recent past, a fundamental understanding of their photoluminescence and structure-properties relationships, especially at the bulk vs. single-particle level, has not been well established. Here we present a comparative study of bulk- and single-particle properties as a function of precursor composition and reaction temperature. The synthesis and characterization of multicolored inherently functionalized carbon dots were achieved from a variety of carbon sources, and at synthesis temperatures of 150 °C and 200 °C. Solvothermal synthesis at 200 °C led to quantum yields as high as 86%, smaller particle sizes, and a narrowed fluorescence emission, while synthesis at 150 °C resulted in a greater UV-visible absorbance, increase in nanoparticle stability, red-shifted fluorescence, and a greater resistance to bulk photobleaching. These results suggest the potential for synthesis temperature to be utilized as a simple tool for modulating carbon dot photophysical properties. Single-particle imaging resolved that particle brightness was determined by both the instantaneous intensity and the on-time duty cycle. Increasing the synthesis temperature caused an enhancement in blinking frequency, which led to an increase in on-time duty cycle in three out of four precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA